Electrodeposited polyethylenedioxythiophene with infiltrated gel electrolyte interface: a close contest of an all-solid-state supercapacitor with its liquid-state counterpart.

نویسندگان

  • Bihag Anothumakkool
  • Arun Torris A T
  • Siddheshwar N Bhange
  • Manohar V Badiger
  • Sreekumar Kurungot
چکیده

We report the design of an all-solid-state supercapacitor, which has charge storage characteristics closely matching that of its liquid-state counterpart even under extreme temperature and humidity conditions. The prototype is made by electro-depositing polyethylenedioxythiophene (PEDOT) onto the individual carbon fibers of a porous carbon substrate followed by intercalating the matrix with polyvinyl alcohol-sulphuric acid (PVA-H2SO4) gel electrolyte. The electrodeposited layer of PEDOT maintained a flower-like growth pattern along the threads of each carbon fiber. This morphology and the alignment of PEDOT led to an enhanced surface area and electrical conductivity, and the pores in the system enabled effective intercalation of the polymer-gel electrolyte. Thus, the established electrode-electrolyte interface nearly mimics that of its counterpart based on the liquid electrolyte. Consequently, the solid device attained very low internal resistance (1.1 Ω cm(-2)) and a high specific capacitance (181 F g(-1)) for PEDOT at a discharge current density of 0.5 A g(-1). Even with a high areal capacitance of 836 mF cm(-2) and volumetric capacitance of 28 F cm(-3), the solid device retained a mass-specific capacitance of 111 F g(-1) for PEDOT. This is in close agreement with the value displayed by the corresponding liquid-state system (112 F g(-1)), which was fabricated by replacing the gel electrolyte with 0.5 M H2SO4. The device also showed excellent charge-discharge stability for 12 000 cycles at 5 A g(-1). The performance of the device was consistent even under wide-ranging humidity (30-80%) and temperature (-10 to 80 °C) conditions. Finally, a device fabricated by increasing the electrode area four times was used to light an LED, which validated the scalability of the process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf...

متن کامل

A high-performance all-solid-state supercapacitor with graphene-doped carbon material electrodes and a graphene oxide-doped ion gel electrolyte

Article history: Received 13 January 2014 Accepted 9 February 2014 Available online 13 February 2014 Two major issues of conventional supercapacitors, composed of a separator, two electrodes, and liquid electrolyte, are their low package energy density and the leakage of the liquid electrolyte. Therefore, great efforts have been dedicated in development of allsolid-state supercapacitors with hi...

متن کامل

A zwitterionic gel electrolyte for efficient solid-state supercapacitors

Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic adva...

متن کامل

Seamless Integration of an Elastomer with Electrode Matrix and its InSitu Conversion into a Solid State Electrolyte for Robust LiIon Batteries

A unique way of robustly integrating an elastomer fi lm onto a graphitic anode and then post-process it into a solid-state electrolyte for lithium-ion battery applications is reported. The mutual solvability of the elastomer and the binder of the graphitic anode (carboxymethyl cellulose, (CMC)) in dimethylformamide facilitates the fusion of the two heterogeneous layers. Dimensional dynamics evo...

متن کامل

High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life.

High energy and power densities are the greatest challenge for all-solid-state lithium batteries due to the poor interfacial compatibility between electrodes and electrolytes as well as low lithium ion transfer kinetics in solid materials. Intimate contact at the cathode-solid electrolyte interface and high ionic conductivity of solid electrolyte are crucial to realizing high-performance all-so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 11  شماره 

صفحات  -

تاریخ انتشار 2014